A New Mathematical Technique for Geographic Profiling

Towson University Applied Mathematics Laboratory

Dr. Mike O'Leary

The NIJ Conference Criminal Justice Research, Development, and Evaluation in the Social and Physical Sciences Washington, D.C. July 17-19, 2006

Supported by the NIJ through grant 2005-IJ-CX-K036

Acknowledgments

- Towson University Applied Mathematics Laboratory
- Coy L. May (Towson University)
- Andrew Engel (SAS)
- Student Team:
- Paul Corbitt
- Brooke Belcher
- Brandie Biddy
- Gregory Emerson

- Laurel Mount
- Ruozhen Yao
- Melissa Zimmerman

Geographic Profiling

The Question:

Given a series of linked crimes committed by the same offender, can we make predictions about the anchor point of the offender?

 The anchor point can be a place of residence, a place of work, or some other commonly visited location.

Implementation

- CrimeStat
 Ned Levine
- Dragnet
 David Canter
- Rigel
 Kim Rossmo
- Predator

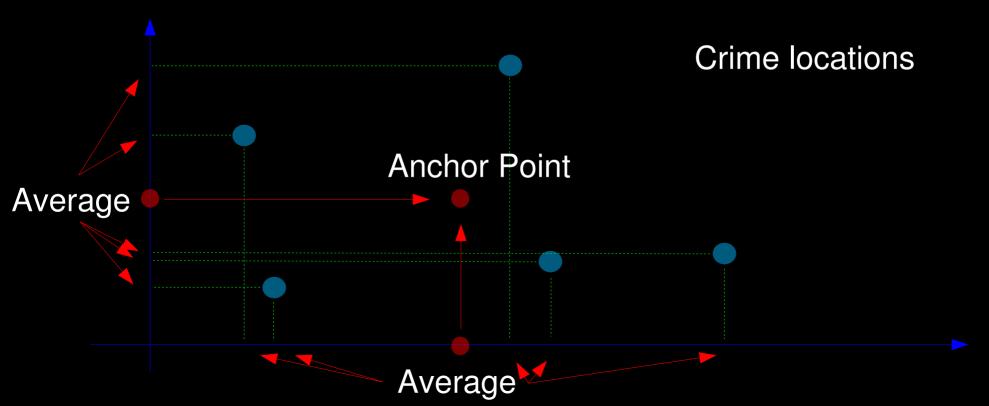
Maurice Godwin

Current Techniques

- Spatial distribution strategies
- Probability distance strategies

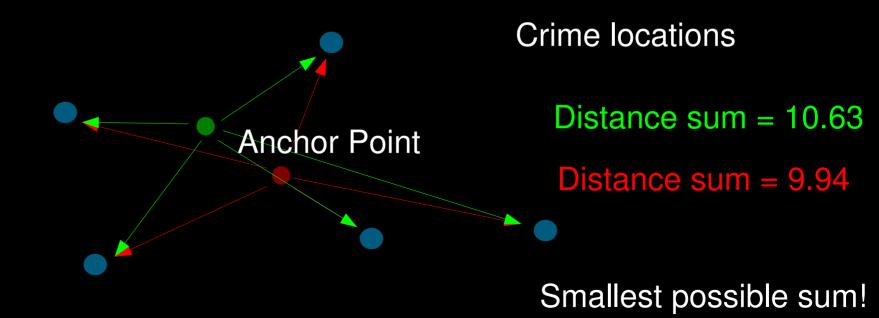
Spatial Distribution Strategies

- Centroid:
 - Use the average value of the crime coordinates



Spatial Distribution Strategies

- Center of minimum distance:
 - Find the point where the sum of the distance to all crime sites is minimized.



Spatial Distribution Strategies

- Circle Method:
 - Use the center of the smallest circle that encloses all crime scenes

Crime locations

Anchor Point

Probability Distribution Strategies

- The anchor point is located in a region with a high "hit score".
- The hit score H(z) has the form

$$H(\boldsymbol{z}) = \sum_{i=1}^{n} h(\boldsymbol{z}, \boldsymbol{x}_{i})$$

= $h(\boldsymbol{z}, \boldsymbol{x}_{1}) + h(\boldsymbol{z}, \boldsymbol{x}_{2}) + \dots + h(\boldsymbol{z}, \boldsymbol{x}_{n})$

where x_i are the crime locations and h(z, x) has a defined form.

Probability Distribution Strategies

Linear:

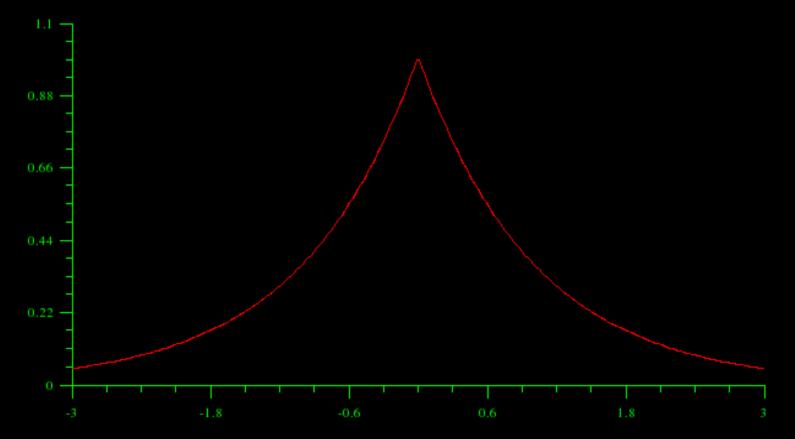
•
$$h(\boldsymbol{z}, \boldsymbol{x}) = a - b |\boldsymbol{x} - \boldsymbol{z}|$$

Hit Score

Crime Locations

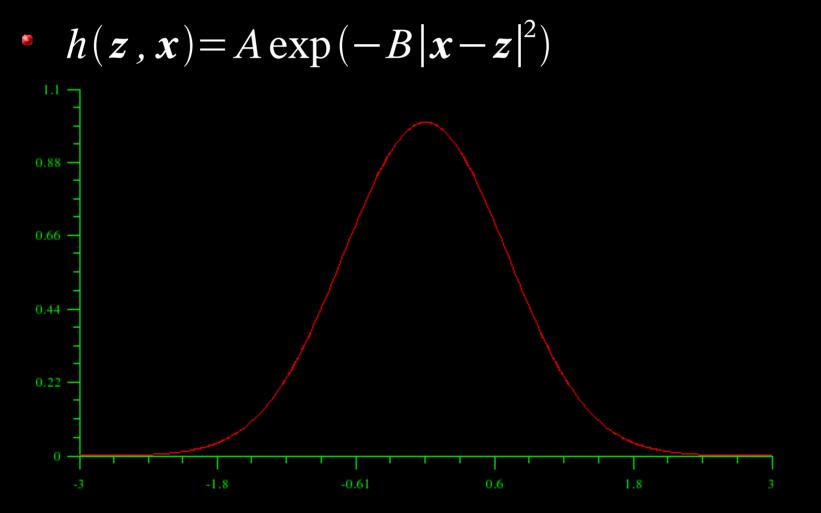
Probability Distance Strategies

- Negative exponential
 - $h(\boldsymbol{z}, \boldsymbol{x}) = A \exp(-B|\boldsymbol{x} \boldsymbol{z}|)$



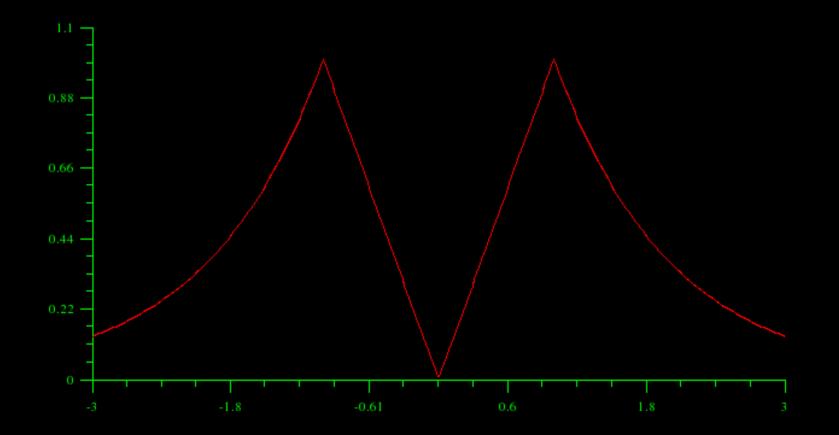
Probability Distance Strategies

Normal distribution



Probability Distance Strategies

Truncated negative exponential:



Shortcomings

- What is the theoretical justification?
 - What assumptions are being made about criminal behavior?
 - What mathematical assumptions are being made?
 - How do you check the assumptions?

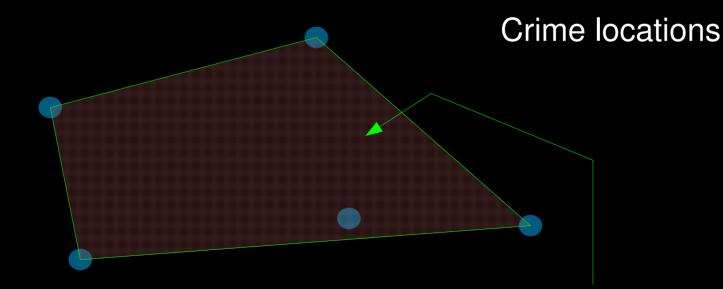
Shortcomings

- How do you add in local information?
 - How could you incorporate socioeconomic variables into the model?

Snook, Individual differences in distance travelled by serial burglars
Malczewski, Poetz & lannuzzi, Spatial analysis of residential burglaries in London, Ontario
Bernasco & Nieuwbeerta, How do residential burglars select target areas?
Osborn & Tseloni, The distribution of household property crimes

Shortcomings

- The convex hull effect:
 - The anchor point always occurs inside the convex hull of the crime locations.



A New Approach

- In previous methods, the unknown quantity was:
 - The anchor point (spatial distribution strategies)
 - The hit score

(probability distance strategies)

• We use a different unknown quantity.

A New Approach

- Let P(x;z) be the density function for the probability that an offender with anchor point z commits a crime at location x.
 - This distribution is our new unknown.
 - This has criminological significance.
 - In particular, assumptions about the form of P(x;z) are equivalent to assumptions about the offender's behavior.

The Mathematics

Given crimes located at x₁, x₂, ..., x_n the maximum likelihood estimate for the anchor point z is the value of z that maximizes

$$L(\boldsymbol{z}) = \prod_{i=1}^{n} P(\boldsymbol{x}_{i}, \boldsymbol{z})$$
$$= P(\boldsymbol{x}_{1}, \boldsymbol{z}) P(\boldsymbol{x}_{2}, \boldsymbol{z}) \cdots P(\boldsymbol{x}_{n}, \boldsymbol{z})$$

or equivalently, the value that maximizes $\lambda(z) = \sum_{i=1}^{n} \ln P(x_i, z)$ $= \ln P(x_1, z) + \ln P(x_2, z) + \dots + \ln P(x_n, z)$

Relation to Spatial Distribution Strategies

 If we make the assumption that offenders choose target locations based only on a distance decay function in normal form, then

$$P(\mathbf{x};\mathbf{z}) = A \exp(-B|\mathbf{x}-\mathbf{z}|^2)$$

• The maximum likelihood estimate for the anchor point is the centroid.

Relation to Spatial Distribution Strategies

 If we make the assumption that offenders choose target locations based only on a distance decay function in exponentially decaying form, then

$$P(\mathbf{x};\mathbf{z}) = A \exp(-B|\mathbf{x}-\mathbf{z}|)$$

 The maximum likelihood estimate for the anchor point is the center of minimum distance.

Relation to Probability Distance Strategies

We can generate a hit score by using either

$$L(\boldsymbol{z}) = \prod_{i=1}^{n} P(\boldsymbol{x}_i, \boldsymbol{z}) \qquad \lambda(\boldsymbol{z}) = \sum_{i=1}^{n} \ln P(\boldsymbol{x}_i, \boldsymbol{z})$$

 If we multiply rather than add in the usual method of probability distance strategies, we obtain our method.

Advantages

- Our method recaptures existing methods.
- Assumptions about offender behavior can be directly used in the model.
- We can explicitly incorporate information about geography and socio-economic factors into the model.
- We do not suffer from the convex hull problem.

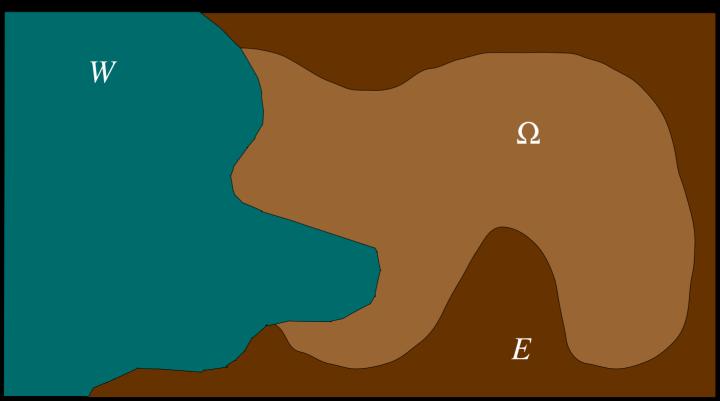
Better Models

- Recall that P(x;z) is the density function for the probability that an offender with anchor point z commits a crime at the point x_{-}
- Suppose that P(x;z) has the general form

$$P(\mathbf{x}; \mathbf{z}) = K(|\mathbf{x} - \mathbf{z}|) \cdot G(\mathbf{x}) \cdot N(\mathbf{x}; \mathbf{z})$$
Dispersion Geographic Normalization kernel factors

The Simplest Case

 We have information about crimes committed by the offender only for a portion of the region.



The Simplest Case

- Regions
 - Ω: Jurisdiction(s). Crimes and anchor points may be located here.
 - *E*: "elsewhere". Anchor points may lie here, but we have no data on crimes here.
 - W: "water". Neither anchor points nor crimes may be located here.
- In all other respects, we assume the geography is *homogeneous*.

The Simplest Case

- We know $z \notin W$ and P(x; z) = 0 if $x \notin \Omega$.
- We set $G(x) = \begin{cases} 1 & x \in \Omega \\ 0 & x \notin \Omega \end{cases}$

We choose an appropriate dispersion kernel; say $K(\mathbf{x}; \mathbf{z}) = \exp(-|\mathbf{x}-\mathbf{z}|^2/\sigma^2)$

• The required normalization function is $N(\boldsymbol{x};\boldsymbol{z}) = \left[\iint_{\Omega} \exp\left(-|\boldsymbol{y}-\boldsymbol{z}|^2/\sigma^2\right) dy_1 dy_2 \right]^{-1}$

Sample Results **Baltimore County** Vehicle Theft **Predicted Anchor Point** ۸ +Offender's Home

Sample Results

- Crimes were vehicle thefts in 2003-2004.
 - Data provided by Phil Canter, Baltimore County Police Department.
- Predicted anchor point was not in the convex hull of the crime locations.

Better Models

- Method is just a modification of the centroid method that accounts for possibly missing crimes outside the jurisdiction.
- Clearly, better models are needed.
- This is ongoing work.
- More data!

Questions?

Contact information: Dr. Mike O'Leary Director, Applied Mathematics Laboratory Towson University Towson, MD 21252

410-704-7457 moleary@towson.edu